Contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie
Le but de la radiothérapie est d’irradier les cellules cancéreuses tout en préservant au maximum les tissus sains environnants. Or, dans le cas du cancer du poumon, la respiration du patient engendre des mouvements de la tumeur pendant le traitement. Une solution possible est de repositionner continuellement le faisceau d’irradiation sur la cible tumorale en mouvement. L’efficacité et la sûreté de cette approche reposent sur la localisation précise en temps réel de la tumeur. Le suivi indirect consiste à inférer la position de la cible tumorale à partir de l’observation d’un signal substitut, visible en continu sans nécessiter de rayonnement ionisant. Un modèle de corrélation spatial doit donc être établi. Par ailleurs, pour compenser la latence du système, l’algorithme de suivi doit pouvoir également anticiper la position future de la cible. Parce que la respiration du patient varie dans le temps, les modèles de prédiction et de corrélation peuvent devenir imprécis. La prédiction de la position de la tumeur devrait alors idéalement être complétée par l’estimation des incertitudes associées aux prédictions. Dans la pratique clinique actuelle, ces incertitudes de positionnement en temps réel ne sont pas explicitement prédites.
Cette thèse de doctorat s’intéresse au contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie. Dans un premier temps, une méthode bayésienne pour le suivi indirect en radiothérapie est développée. Cette approche, basée sur le filtre de Kalman, permet de prédire non seulement la position future de la tumeur à partir d’un signal substitut, mais aussi les incertitudes associées. Ce travail offre une première preuve de concept, et montre également le potentiel du foie comme substitut interne, qui apparait plus robuste et fiable que les marqueurs externes communément utilisés dans la pratique clinique. Dans un deuxième temps, une adaptation de la méthode est proposée afin d’améliorer sa robustesse face aux changements de respiration. Cette innovation permet de prédire des régions de confiance adaptatives, capables de détecter les erreurs de prédiction élevées, en se basant exclusivement sur l’observation du signal substitut. Les résultats révèlent qu’à sensibilité élevée (90%), une spécificité d’environ 50% est obtenue. Un processus de validation innovant basé sur ces régions de confiance adaptatives est ensuite évalué et comparé au processus conventionnel qui consiste en des mesures de la cible à intervalles de temps fixes et prédéterminés. Une version adaptative de la méthode bayésienne est donc développée afin d’intégrer des mesures occasionnelles de la position de la cible. Les résultats confirment que les incertitudes prédites par la méthode bayésienne permettent de détecter les erreurs de prédictions élevées, et démontrent que le processus de validation basé sur ces incertitudes a le potentiel d’être plus efficace que les validations régulières. Ces approches bayésiennes sont validées sur des séquences respiratoires de volontaires, acquises par imagerie par résonance magnétique (IRM) dynamique et interpolées à haute fréquence. Afin de compléter l’évaluation de la méthode bayésienne pour le suivi indirect, une validation expérimentale préliminaire est conduite sur des données cliniques de patients atteints de cancer du poumon. Les travaux de ce projet doctoral promettent une amélioration du contrôle en temps réel de la précision des prédictions lors des traitements de radiothérapie. Finalement, puisque l’imagerie ultrasonore pourrait être employée pour visualiser les substituts internes, une étude préliminaire sur l’évaluation automatique de la qualité des images ultrasonores est présentée. Ces résultats pourront être utilisés ultérieurement pour le suivi indirect en radiothérapie en vue d’optimiser les acquisitions ultrasonores pendant les traitements et faciliter l’extraction automatique du mouvement du substitut.