Polynômes Orthogonaux : Processus limites et modèles exactement résolubles
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leur connection aux modèles exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction génératrice bilinéaire pour les polynômes de Big −1 Jacobi.