Timothy Noël
University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Flow Chemistry Group, Amsterdam, The Netherlands
E-mail: t.noel@uva.nl; website: www.NoelResearchGroup.com; Twitter: @NoelGroupUVA
Titre: Innovation in Synthetic Methodology Through Use of Flow
RÉSUMÉ: Until recently, many reactions have been exclusively performed in conventional batch LabWare. With the advent of microreactor technology, significant effort has been devoted to develop a wide variety of continuous-flow techniques to facilitate organic synthesis. Microreactor technology offers several advantages compared to traditional batch reactors, such as, enhanced heat- and mass-transfer, improved irradiation, safety of operation and the possibility to integrate several reaction steps and subsequent separations in a single streamlined process.1
My group has taken a great interest in assisting chemists by developing automated and flow-based reaction technologies capable of reducing manual labor, increasing the reproducibility of the results and accelerating reaction discovery. This further allows the chemists to explore uncharted chemical space.
In this presentation, we will give an overview of our synthetic methodology development, exemplified by photocatalysis2, C–H activation chemistry3 and electrochemistry4 and how these synthetic methods were impacted by continuous-flow microreactor technology. Furthermore, we will discuss the developed technology and reaction models in detail.
References:
- (a) T. Noel, Y. Cao, G. Laudadio, Acc. Chem. Res. 2019, 52, 2858-2869. (b) H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noel, Chem. Soc. Rev. 2016, 45, 83-117. (c) D. Cambie, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noel, Chem. Rev. 2016, 116, 10276-10341.
- (a) D. Cambie, J. Dobbelaar, P. Riente Paiva, J. Vanderspikken, C. Shen, P. Seeberger, K. Gilmore, M. Debije, T. Noel, Angew. Chem. Int. Ed. 2019, 58, 14374-14378. (b) X.-J. Wei, I. Abdiaj, C. Sambiagio, C. Li, E. Zysman-Colman, J. Alcazar, T. Noel, Angew. Chem. Int. Ed. 2019, 58, 13030-13034. (c) X.-J. Wei, W. Boon, V. Hessel, T. Noel, ACS Catal. 2017, 7, 7136-7140. (b) C. Bottecchia, M. Rubens, S. Gunnoo, V. Hessel, A. Madder, T. Noel, Angew. Chem. Int. Ed. 2017, 56, 12701-12707. (c) D. Cambie, F. Zhao, V. Hessel, M. G. Debije, T. Noel, Angew. Chem. Int. Ed. 2017, 56, 1050-1054. (d) N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noel, Angew. Chem. Int. Ed. 2016, 55, 15549-15553.
- (a) G. Laudadio, Y. Deng, K. van der Wal, D. Ravelli, M. Nuno, M. Fagnoni, D. Guthrie, Y. Sun, T. Noel, Science 2020, 369, 92-96. (b) G. Laudadio, S. Govaerts, Y. Wang, D. Ravelli, H. F. Koolman, M. Fagnoni, S. W. Djuric, T. Noel, Angew. Chem. Int. Ed. 2018, 57, 4078-4082. (c) H. P. L. Gemoets, G. Laudadio, K. Verstraete, V. Hessel, T. Noel, Angew. Chem. Int. Ed. 2017, 56, 7161-7165. (d) U. K. Sharma, H. P. L. Gemoets, F. Schroeder, T. Noel, E Van der Eycken, ACS Catal. 2017, 7, 3818-3823.
- (a) G. Laudadio, A. de A. Bartolomeu, L. M. H. M. Verwijlen, Y. Cao, K. T. de Oliveira, T. Noel, J. Am. Chem. Soc. 2019, 141, 11832-11836. (b) G. Laudadio, E. Barmpoutsis, C. Schotten, L. Struik, S. Govaerts, D. L. Browne, T. Noel, J. Am. Chem. Soc. 2019, 141, 5664-5668. (b) G. Laudadio, W. De Smet, L. Struik, Y. Cao, T. Noel, J. Flow Chem. 2018, 8, 157-165. (c) G. Laudadio, N. J. W. Straathof, M. D. Lanting, B. Knoops, V. Hessel, T. Noel, Green Chem. 2017, 19, 4061-4066.